Documents from California

Bird fatality study at Altamont Pass Wind Resource Area (APWRA)

M21_2008_altamont_bird_fatality_report_01_25_08_thumb The current management goal for the Altamont Pass Wind Resource Area (APWRA) is to significantly and substantially reduce the fatalities of birds resulting from collisions with the wind turbines and other turbine-related incidents. This is the first report on bird/bat mortality rates at the APWRA since the management plan was implemented. "The results of this study show an apparent continued trend of high bird fatalities, both raptors and non-raptors at APWRA. The number of annual fatalities does not appear to be decreasing despite implementation of specific conservations measures including the cross-over winter shutdown program, high risk turbine removal and blade-painting."
25 Jan 2008

California’s Greenhouse Gas Policies: Local Solutions to a Global Problem?

Californias_greenhouse_gas_policies_csem_thumb California is in the process of implementing a broad portfolio of policies and regulations aimed at reducing greenhouse gas emissions. This paper summarizes the initiatives likely to impact the electricity generating sector. We present calculations showing that there is a substantial risk that two of the most prominent policies could simply result in a reshuffling, on paper, of the electricity generating resources within the West that are dedicated to serving California. This reshuffling is different from the conventional leakage problem as it involves no physical changes to the way electricity is generated across regulated and unregulated regions, but is instead driven by a contractual reshuffling of who buys power from whom. The problem is similar to an ineffective consumer boycott. The problem is still present but less severe if more Western states adopt carbon limitations. We also show that some of the least market-based initiatives, the renewable portfolio standards (RPS), are likely to have the biggest near-term impact on the carbon-intensity of electricity generation in the West. Thus the scale of RPS programs may be limiting the potential role of non-renewable options in reducing carbon emissions from the electricity sector.
1 Apr 2007

Less For More: The Rube Goldberg Nature of Industrial Wind Development

Less_for_more_thumb Rube Goldberg would admire the utter purity of the pretensions of wind technology in pursuit of a safer modern world, claiming to be saving the environment while wreaking havoc upon it. But even he might be astonished by the spin of wind industry spokesmen. Consider the comments made by the American Wind Industry Association.s Christina Real de Azua in the wake of the virtual nonperformance of California.s more than 13,000 wind turbines in mitigating the electricity crisis precipitated by last July.s .heat storm.. .You really don.t count on wind energy as capacity,. she said. .It is different from other technologies because it can.t be dispatched.. (84) The press reported her comments solemnly without question, without even a risible chortle. Because they perceive time to be running out on fossil fuels, and the lure of non-polluting wind power is so seductive, otherwise sensible people are promoting it at any cost, without investigating potential negative consequences-- and with no apparent knowledge of even recent environmental history or grid operations. Eventually, the pedal of wishful thinking and political demagoguery will meet the renitent metal of reality in the form of the Second Law of Thermodynamics (85) and public resistance, as it has in Denmark and Germany. Ironically, support for industrial wind energy because of a desire for reductions in fossil-fueled power and their polluting emissions leads ineluctably to nuclear power, particularly under pressure of relentlessly increasing demand for reliable electricity. Environmentalists who demand dependable power generation at minimum environmental risk should take care about what they wish for, more aware that, with Rube Goldberg machines, the desired outcome is unlikely to be achieved. Subsidies given to industrial wind technology divert resources that could otherwise support effective measures, while uninformed rhetoric on its behalf distracts from the discourse.and political action-- necessary for achieving more enlightened policy.
20 Dec 2006

CPUC Preliminary Ruling on Greenhouse Gas Emissions Performance Standard

Cpuc_prelimary_ruling_emissions_standard_and_attachments_thumb Today, we adopt an interim greenhouse gas (GHG) emissions performance standard for new long-term financial commitments to baseload generation undertaken by all load-serving entities (LSEs), consistent with the requirements and definitions of Senate Bill (SB) 1368 (Stats. 2006, ch. 598).2 Our adopted emissions performance standard or “EPS” is intended to serve as a near-term bridge until an enforceable load-based GHG emissions limit is established and in operation.......Under SB 1368, the EPS applies to “baseload generation,” but the requirement to comply with it is triggered only if there is a “long-term financial commitment” by an LSE. The statute defines baseload generation as “electricity generation from a powerplant that is designed and intended to provide electricity at an annualized plant capacity factor of at least 60%..........Pursuant to SB 1368, the performance level of the EPS must be “no higher” than the emissions rate of a CCGT powerplant.11 However, the statute does not specify the emissions rate for a CCGT. Based on our review of emissions rates associated with a broad range of CCGT powerplants of varying vintages, we adopt an EPS emissions rate of 1,000 pounds of carbon dioxide (CO2) per megawatt-hour (MWh).Editor's Note: This provides interesting insight into the rationale behind establishing 1,000 pds of CO2/MWh as an Emissions Performance Standard (EPS) for baseload generation. Please note that in Figure 1 "Net Emissions Comparison Data' the net emissions accorded 'wind electricity' should have been accorded to 'solar thermal with Gas Assist'.
16 Dec 2006

Permitting setbacks for wind turbines in California

Permitting_setback_requirements_thumb The California Wind Energy Collaborative was tasked to look at barriers to new wind energy development in the state. Planning commissions in the state have developed setback standards to reduce the risk of damage or injury from fragments resulting from wind turbine rotor failures. These standards are usually based on overall turbine height. With the trend toward larger capacity, taller towers and longer blades, modern wind turbines can be "squeezed out" of parcels thus reducing the economic viability of new wind developments. Current setback standards and their development are reviewed. The rotor failure probability is discussed and public domain statistics are reviewed. The available documentation shows rotor failure probability in the 1-in-1000 per turbine per year range. The analysis of the rotor fragment throw event is discussed in simplified terms. The range of the throw is highly dependent on the release velocity, which is a function of the turbine tip speed. The tip speed of wind turbines does not tend to increase with turbine size, thus offering possible relief to setback standards. Six analyses of rotor fragment risks were reviewed. The analyses do not particularly provide guidance for setbacks. Recommendations are made to use models from previous analyses for developing setbacks with an acceptable hazard probability.
1 Nov 2006

Wind Turbine Videos

Click on the links below to see and hear wind turbines in motion.Editor's Note: A note of caution. These clips are more valuable visually than as an accurate representation of turbine noise. The background noise in the first two videos is undoubtedly due, in part, to wind noise on the video camera's microphone. In the third video the background noise is, in part, road and radio noise. More sophisticated acoustical equipment is required to properly capture the sound of the operating turbines.
13 Aug 2006

Grid Impacts of Wind Power Variability: Recent Assessments from a Variety of Utilities in the United States

Ewec06gridpaper_thumb In this report we discuss some recent studies that have occurred in the United States since our previous work [2, 3]. The key objectives of these studies were to quantify the physical impacts and costs of wind generation on grid operations and the associated costs. Examples of these costs are (a) committing unneeded generation, (b) allocating more load-following capability to account for wind variability, and (c) allocating more regulation capacity. These are referred to as “ancillary service” costs, and are based on the physical system and operating characteristics and procedures. This topic is covered in more detail by Zavadil et al. [4].
1 Jan 2006

Why energy conservation trumps windmills

Why_energy_conservation_thumb If you really want to cut energy consumption, reduce pollution, improve public health and protect our environment, it’s time to contact your elected officials, educate them about the lessons of Denmark, Germany and elsewhere, and tell them you want tougher energy efficiency measures instead of wind power plants. Otherwise, in the next few years, you’ll be looking at wind turbines in some of your favorite places, with the knowledge that they’re doing little more than funneling your tax dollars to a few lucky corporations and landowners, and away from better solutions.
1 Feb 2005

Developing Methods to Reduce Bird Fatalities in the Altamont Pass Wind Resource Area

Wind turbines in the Altamont Pass Wind Resource Area (APWRA) provide on average 1.1 billion kilowatt-hours (kWh) of emissions-free electricity annually, enough to power almost 200,000 average households per annum, but these turbines also kill birds that are legally protected, and have been doing so for decades. This five-year research effort focused on better understanding the causes of bird mortality at the world's largest wind farm. Researchers studied 2,548 wind turbines and combined their data with results from 1,526 wind turbines they had studied previously. They sought to: (1) quantify bird use, including characterizing and quantifying perching and flying behaviors of individual birds around wind turbines; (2) evaluate flight behaviors and the environmental and topographic conditions associated with them; (3) identify possible relationships between bird mortality and bird behaviors, wind tower design and operations, landscape attributes, and prey availability; and (4) develop predictive, empirical models that identify turbine or environmental conditions that are associated with high vulnerability. Researchers concluded that bird fatalities at the APWRA result from various attributes of wind turbine configuration and placement, and that species-specific behavior plays a large role in how each contributory factor affects mortality. The report details numerous specific observations. Researchers identified and evaluated possible measures to mitigate bird mortality in the APWRA. They offer recommendations to discontinue or modify some current management actions, to implement new ones immediately, and to experiment with others. Data presented in the report support these recommendations. The results suggest that repowering with carefully placed, modern wind turbines mounted on taller towers may be the preferable means to substantially reduce bird mortality.
1 Aug 2004

California ISO Five Year Assessment (2004-2008)

California_iso_2003_discounting_of_wind_energy_thumb This report illustrates how a typical ISO might assess the capacity value of energy sources within an energy portfolio and the negligible capacity value accorded industrial wind. An excerot of the report discussing the limitations of wind is provided below. The full report can be accessed by clicking the links on the page.
10 Oct 2003

Wind Energy - Development in California Status Report

Cec-status-report-p500-85-003_thumb This status report released by the California Energy Commission discusses the status of the technology, current and proposed development, regulatory processes, issues hindering development, and recommended actions needed to resolve identified issues. The section of the report on Noise and Aesthetics is provided below. Audible and low frequency impulse noise were reported as problems with the turbines. The full report can be accessed from the links on this page.   
3 Apr 1985

http://www.windaction.org/posts?location=California&p=2&type=Document
back to top