Documents

Guidelines For Community Noise

Comnoise-1_1__thumb This WHO document on the Guidelines for Community Noise is the outcome of the WHO- expert task force meeting held in London, United Kingdom, in April 1999. It bases on the document entitled “Community Noise” that was prepared for the World Health Organization and published in 1995 by the Stockholm University and Karolinska Institute.
1 Jan 1999

Darmstadt Manifesto

Darmstadt_manifesto_thumb Issued on September 1, 1998 by The Initiative Group and signed by more than 100 German University professors, the Darmstadt Manifesto On the Exploitation of Wind Energy in Germany demands the withdrawal of all direct and indirect subsidies in order to put a stop to the exploitation of wind energy. The manifesto claims that the exploitation of wind energy promotes the type of technology which is of no significance whatever for the purpose of supplying energy, saving resources and protecting the climate. The money could be put to far more effective use in increasing the efficiency of power stations, in ensuring effective energy consumption and in funding scientific research into fundamental principles in the field of energy. The Darmstadt Manifesto is directed in particular at politicians, environmental organisations and the media.
1 Sep 1998

Assessment of Safety Risks Arising from Wind Turbine Icing

Assessment_of_safety_risks_arising_from_wind_turbine_icing_thumb "Developers and owners of wind turbines have a duty to ensure the safety of the general public and their own staff. However, there are currently no guidelines for dealing with potential dangers arising from ice thrown off wind turbines. This puts developers, owners, planning authorities and insurers in a difficult position. To rectify this situation, the work presented here has commenced in order to produce an authoritative set of guidelines. Initial work has resulted in the development of a risk assessment methodology which has been used to demonstrate that the risk of being struck by ice thrown from a turbine is diminishingly small at distances greater than approximately 250 m from the turbine in a climate where moderate icing occurs."
2 Apr 1998

Community Noise

World_health_organization_study_-community_noise_thumb The document critically reviews the adverse effects of community noise, including interference with communication, noise-induced hearing loss, annoyance responses, and effects on sleep, the cardiovascular and psychophysiological systems, performance, productivity, and social behavior. Noise measures or indices based only on energy summation are not enough for the characterization of most noise environments. This is particularly true when concerned with health assessment and predictions. It is equally important to measure and display the maximum values of the noise fluctuations, preferably combined with a measure of the number of noise events, and to assess whether the noise includes a large proportion of low frequency components.
1 Jan 1995

Wind Energy Potential in the United States

Nwtc_about_the_program_-_wind_resource_-_wind_energy_potential_thumb Although the nation's wind potential is very large, only part of it can be exploited economically. The economic viability of wind power will vary from utility to utility. Important factors not addressed in this study that influence land availability and wind electric potential include production/demand match (seasonal and daily), transmission and access constraints, public acceptance, and other technological and institutional constraints. Editor's Note: Though dated, this is a worthwhile read if read carefully.
1 Sep 1993

Why cement-making produces carbon dioxide

Why_cement_thumb Cement manufacturing is the third largest cause of man-made carbon dioxide emissions. While fossil fuel combustion and deforestation each produce significantly more carbon dioxide (CO2), cement-making is responsible for approximately 2.5% of total worldwide emissions from industrial sources (energy plus manufacturing sectors).
1 May 1993

A Proposed Metric for Assessing the Potential of Community Annoyance from Wind Turbine Low-Frequency Noise Emissions

Wind_turbine_low-frequency_noise_emissions_thumb This paper, presented at the Windpower ’87 Conference & Exposition in San Francisco by N.D. Kelley, a physicist at the Solar Energy Research Institute in Golden, Colorado validates the fact that turbines (both upwind and downwind) produce low-frequency sound emissions that can negatively impact humans within their homes. Although modern wind turbines are different from those studied in 1987, the research is significant in that it demonstrates the need to test for low-frequency sound emissions and to do so inside buildings.
1 Nov 1987

Wind Energy - Development in California Status Report

Cec-status-report-p500-85-003_thumb This status report released by the California Energy Commission discusses the status of the technology, current and proposed development, regulatory processes, issues hindering development, and recommended actions needed to resolve identified issues. The section of the report on Noise and Aesthetics is provided below. Audible and low frequency impulse noise were reported as problems with the turbines. The full report can be accessed from the links on this page.   
3 Apr 1985

Acoustic Noise Associated with the MOD-1 Wind Turbine: Its Source, Impact, and Control

Acousticnoisemod-1windturbine_thumb This report summarizes extensive research by staff of the Solar Energy Research Institute and its subcontractors conducted to establish the or1g1n and possible amelioration of acoustic disturbances associated with the operation of the DOE/NASA MOD-1 wind turbine installed near Boone, North Carolina. Results have shown that the most probable source of this acoustic annoyance was the transient, 'unsteady aerodynamic lift imparted to the turbine blades as they passed through the lee wakes of the large, cylindrical tower supports. Nearby residents were annoyed by the low-frequency, acoustic impulses propagated into the structures in which the complainants lived. The situation was aggravated further by a complex sound propagation process controlled by terrain and atmospheric focusing. Several techniques for reducing the abrupt, unsteady blade load transients were researched and are discussed.
1 Feb 1985

Rose v. Chaikin

1982-nj-rose-v-chaikin-hall_thumb This case, before the New Jersey Superior Court, represents one of the first instances of a nuisance case brought against an operating wind turbine due to noise. The court found that the defendants' wind turbine constituted an "actionable nuisance". 
10 Nov 1982

Wind Power: Capacity Factor, Intermittency, and what happens when the wind doesn’t blow?

Rerl_fact_sheet_2a_capacity_factor_thumb Wind turbines convert the kinetic energy in moving air into rotational energy, which in turn is converted to electricity. Since wind speeds vary from month to month and second to second, the amount of electricity wind can make varies constantly. Sometimes a wind turbine will make no power at all. This variability does affect the value of the wind power……Editor’s Note: This ‘fact sheet’ is, on the whole, a comparatively fair report. The definitions provided for capacity factor, efficiency, reliability, dispatchability, and availability are useful. Its discussion of back-up generation, marginal emissions and Germany & Denmark, however, is disingenuous as is, to a lesser degree, its discussion of capacity factor and availability. IWA's comments (updated October '06) on these issues follow selected extracts from the 'fact sheet' below.
1 Jan 1970

http://www.windaction.org/posts?p=76&type=Document
back to top