Documents filed under Technology from Texas

How Less Became More: Wind, Power and Unintended Consequences in the Colorado Energy Market

How_less_became_more-wind_power_in_co_energy_market_thumb This report was sponsored by the Independent Producers Association of Mountain States. It examined the emissions benefits of renewable energy within an operating grid system and found that the often erratic and unpredictable wind resource resulted in the inefficient operation of coal and gas plants. As a result, the authors report that the temporary reduction in coal or gas to permit wind energy on the system actually raised the level of SO2, NOX and CO2 than would have occurred had less wind energy been generated and the fossil plants permitted to operate as designed. 
16 Apr 2010

Working Paper: Utility-scale Wind Power: Impacts of Increased Penetration

Dti3_20robin_20oakley_20atl_1__thumb This working paper is made available by the Resource and Environmental economics and Policy Analysis (REPA) Research Group at the University of Victoria. REPA working papers have not been peer reviewed and contain preliminary research findings. They shall not be cited without the expressed written consent of the author(s). Editor's Note: The authors’ conclusion regarding ‘effective capacity’, i.e. the measure of a generator’s contribution to system reliability that is tied to meeting peak loads, is that it “is difficult to generalize, as it is a highly site-specific quantity determined by the correlation between wind resource and load” and that ‘values range from 26 % to 0% of rated capacity.” This conclusion is based, in part, on a 2003 study by the California Energy Commission that estimated that three wind farm aggregates- Altamont, San Gorgonio and Tehachpi, which collectively represent 75% of California’s deployed wind capacity- had relative capacity credits of 26.0%, 23.9% and 22.0% respectively. It is noteworthy that during California’s Summer ’06 energy crunch, as has been widely publicized in the press, wind power produced at 254.6 MW (10.2% of wind’s rated capacity of 2,500MW) at the time of peak demand (on July 24th) and over the preceding seven days (July 17-23) produced at 89.4 to 113.0 MW, averaging only 99.1 MW at the time of peak demand or just 4% of rated capacity.
1 Jun 2005

Transmission Issues Associated with Renewable Energy in Texas

Renewablestransmissi_thumb This 'informal white paper' authored by the renewable energy industry and the Electric Reliability Council of Texas addresses the impact of wind's intermittency on the need for the development of comparable capacities of reliable sources that can be called upon when the wind is not blowing. It contains a particularly interesting chart that characterizes different energy sources as 'base load', 'peak load' and 'intermittent' with their associated benefits and drawbacks. Wind is deemed 'intermittent' with the following benefits (no emissions, no fuel costs, stable cost, low operating cost) and drawbacks (not dispatchable, not responsive, transmission needs, low peak value).
28 Mar 2005
back to top