Documents filed under Technology from Europe

The Performance of Wind Farms in the United Kingdom and Denmark

Ref.hughes.19.12.12_thumb The Renewable Energy Foundation published this research paper by Dr Gordon Hughes, Professor of Economics at the University of Edinburgh, on the performance over time of wind farms in the United Kingdom and Denmark.  The paper can be downloaded by clicking on the link(s) on this page.  The UK and Danish data used in the analysis is also available below. The following summarises the results of the research.
19 Dec 2018

The Performance of Wind Farms in the United Kingdom and Denmark

Ref.hughes.19.12.12_thumb The Renewable Energy Foundation published this research paper by Dr Gordon Hughes, Professor of Economics at the University of Edinburgh, on the performance over time of wind farms in the United Kingdom and Denmark.  The paper can be downloaded by clicking on the link(s) on this page.  The UK and Danish data used in the analysis is also available below. The following summarises the results of the research.
19 Dec 2018

Capacity Factor of Wind Power: Realized Values vs. Estimates

Capacityfactorofwindpower-boccard_thumb For two decades, the capacity factor of wind power measuring the mean energy delivered by wind turbines has been assumed at 35% of the name plate capacity. Yet, the mean realized value for Europe over the last five years is closer to 21% thus making levelized cost 66% higher than previously thought. This paper, examines the discrepancy and the consequences of the capacity factor miscalculation and some policy recommendations.
1 Oct 2008

Wind Power: What impact on the European Grids?

Europe continues to observe a steady growth in wind generation: from 41 GW of installed power in 2005 to more than 67 GW in 2008. Although wind is a great resource for sustainable power, its unstable behavior is also making the existing power distribution networks less easy to manage.
17 Feb 2008

Less For More: The Rube Goldberg Nature of Industrial Wind Development

Less_for_more_thumb Rube Goldberg would admire the utter purity of the pretensions of wind technology in pursuit of a safer modern world, claiming to be saving the environment while wreaking havoc upon it. But even he might be astonished by the spin of wind industry spokesmen. Consider the comments made by the American Wind Industry Association.s Christina Real de Azua in the wake of the virtual nonperformance of California.s more than 13,000 wind turbines in mitigating the electricity crisis precipitated by last July.s .heat storm.. .You really don.t count on wind energy as capacity,. she said. .It is different from other technologies because it can.t be dispatched.. (84) The press reported her comments solemnly without question, without even a risible chortle. Because they perceive time to be running out on fossil fuels, and the lure of non-polluting wind power is so seductive, otherwise sensible people are promoting it at any cost, without investigating potential negative consequences-- and with no apparent knowledge of even recent environmental history or grid operations. Eventually, the pedal of wishful thinking and political demagoguery will meet the renitent metal of reality in the form of the Second Law of Thermodynamics (85) and public resistance, as it has in Denmark and Germany. Ironically, support for industrial wind energy because of a desire for reductions in fossil-fueled power and their polluting emissions leads ineluctably to nuclear power, particularly under pressure of relentlessly increasing demand for reliable electricity. Environmentalists who demand dependable power generation at minimum environmental risk should take care about what they wish for, more aware that, with Rube Goldberg machines, the desired outcome is unlikely to be achieved. Subsidies given to industrial wind technology divert resources that could otherwise support effective measures, while uninformed rhetoric on its behalf distracts from the discourse.and political action-- necessary for achieving more enlightened policy.
20 Dec 2006

Less For More: The Rube Goldberg Nature of Industrial Wind Development

Less_for_more_thumb Rube Goldberg would admire the utter purity of the pretensions of wind technology in pursuit of a safer modern world, claiming to be saving the environment while wreaking havoc upon it. But even he might be astonished by the spin of wind industry spokesmen. Consider the comments made by the American Wind Industry Association.s Christina Real de Azua in the wake of the virtual nonperformance of California.s more than 13,000 wind turbines in mitigating the electricity crisis precipitated by last July.s .heat storm.. .You really don.t count on wind energy as capacity,. she said. .It is different from other technologies because it can.t be dispatched.. (84) The press reported her comments solemnly without question, without even a risible chortle. Because they perceive time to be running out on fossil fuels, and the lure of non-polluting wind power is so seductive, otherwise sensible people are promoting it at any cost, without investigating potential negative consequences-- and with no apparent knowledge of even recent environmental history or grid operations. Eventually, the pedal of wishful thinking and political demagoguery will meet the renitent metal of reality in the form of the Second Law of Thermodynamics (85) and public resistance, as it has in Denmark and Germany. Ironically, support for industrial wind energy because of a desire for reductions in fossil-fueled power and their polluting emissions leads ineluctably to nuclear power, particularly under pressure of relentlessly increasing demand for reliable electricity. Environmentalists who demand dependable power generation at minimum environmental risk should take care about what they wish for, more aware that, with Rube Goldberg machines, the desired outcome is unlikely to be achieved. Subsidies given to industrial wind technology divert resources that could otherwise support effective measures, while uninformed rhetoric on its behalf distracts from the discourse.and political action-- necessary for achieving more enlightened policy.
20 Dec 2006

UK Renewable Energy Data: Issue 1 (08.12.06): Vol. 5: Wind

Uk_renewable_energy_data_thumb Editor's Note: The following are selected excerpts from the Renewable Energy Foundation press release describing this research. The full press release is available via the link below. Using the new research it is now possible to assess how renewable generators up and down the country are performing. This data, published in five online files; Biomass, Hydro, Landfill Gas, Sewage Gas and Windpower, shows that firm generators are producing high load factors with carefully designed resource use and load following. However in the wind sector, far and away the most active of all the technologies at present, results vary enormously due to location. The capacities offshore are encouraging, whilst those onshore are generally only superior in locations very distant from the populations requiring the electrical energy. Although most sites were built on expected capacity factors of around 30%, results include; 19% (approx) capacity factor for the wind turbines at Dagenham, Essex. 9% (approx) capacity factor at the Barnard Castle plant, County Durham. The best performing wind sites are in the north of Scotland, and on Shetland the wind turbines are producing capacity factors of over 50%. Using this analysis of the Ofgem data, researchers have also calibrated a model predicting how a large installed capacity of wind power built across the UK would actually perform. The project used Meteorological Office data to model output for every hour of every January from 1994-2006. The startling results show that, even when distributed UK wide, the output is still highly volatile. The average January power variation over the last 12 years is 94% of installed capacity. It is an uncontrolled variation decided by the weather. The average minimum output is only 3.7% or 0.9GW in a 25GW system. Power swings of 70% in 30 hours are the norm in January. The governments’ expectation is that three quarters of the 2010 renewables target, and the lion’s share of the ‘20% by 2020’ target will be made up of windpower.[2] However, the new research offers predictions which are in keeping with Danish and German empirical experience and demonstrate the need for a broader spread of investment in the renewable sector. The report was commissioned from Oswald Consultancy Limited and funded by donation from the green entrepreneur Vincent Tchenguiz. Campbell Dunford, CEO of REF, said: “This important modelling exercise shows that even with best efforts a large wind carpet in the UK would have a low capacity credit, and be a real handful to manage. This isn’t the best way to encourage China and India to move towards the low-carbon economy. As a matter of urgency, for the planet’s sake, we need to bring forward a much broader range of low carbon generating technologies, including the full sweep of renewables. Wind has a place, but it must not be allowed to squeeze out other technologies that have more to offer.”
8 Dec 2006

Clean Coal Technology and The Energy Review

Clean_coal_energy_review_thumb This report is based on data provided by the International Energy Agency, the Department of Trade & Industry, the Royal Academy of Engineering, Princeton University and a number of other respected sources. It sets out an agenda for Government in the short term and the long term, answering the key issues raised by the Government's current Energy Review related to power generation: the economy, the environment and security of supply.
1 Feb 2006

Grid Impacts of Wind Power Variability: Recent Assessments from a Variety of Utilities in the United States

Ewec06gridpaper_thumb In this report we discuss some recent studies that have occurred in the United States since our previous work [2, 3]. The key objectives of these studies were to quantify the physical impacts and costs of wind generation on grid operations and the associated costs. Examples of these costs are (a) committing unneeded generation, (b) allocating more load-following capability to account for wind variability, and (c) allocating more regulation capacity. These are referred to as “ancillary service” costs, and are based on the physical system and operating characteristics and procedures. This topic is covered in more detail by Zavadil et al. [4].
1 Jan 2006

Annual Report: Capital Grant Scheme for Offshore Wind - Scroby Sands Wind offshore farm site

Capital_grant_scheme_for_offshore_wind_thumb The values in Table 2 are based on total availability and reflect the time that the turbines are available to operate. Hence, no allowance is made for the effects of grid outages or ‘weather days’ which could prevent access to turbines for repairs. The planned availability was exceeded for only one month and the availability across the site was below expectation especially during the autumn period. This was due almost entirely to problems with bearings in the gearbox as will be discussed in Operational Issues.
31 Dec 2005

Working Paper: Utility-scale Wind Power: Impacts of Increased Penetration

Dti3_20robin_20oakley_20atl_1__thumb This working paper is made available by the Resource and Environmental economics and Policy Analysis (REPA) Research Group at the University of Victoria. REPA working papers have not been peer reviewed and contain preliminary research findings. They shall not be cited without the expressed written consent of the author(s). Editor's Note: The authors’ conclusion regarding ‘effective capacity’, i.e. the measure of a generator’s contribution to system reliability that is tied to meeting peak loads, is that it “is difficult to generalize, as it is a highly site-specific quantity determined by the correlation between wind resource and load” and that ‘values range from 26 % to 0% of rated capacity.” This conclusion is based, in part, on a 2003 study by the California Energy Commission that estimated that three wind farm aggregates- Altamont, San Gorgonio and Tehachpi, which collectively represent 75% of California’s deployed wind capacity- had relative capacity credits of 26.0%, 23.9% and 22.0% respectively. It is noteworthy that during California’s Summer ’06 energy crunch, as has been widely publicized in the press, wind power produced at 254.6 MW (10.2% of wind’s rated capacity of 2,500MW) at the time of peak demand (on July 24th) and over the preceding seven days (July 17-23) produced at 89.4 to 113.0 MW, averaging only 99.1 MW at the time of peak demand or just 4% of rated capacity.
1 Jun 2005

Working Paper: Utility-scale Wind Power: Impacts of Increased Penetration

Dti3_20robin_20oakley_20atl_1__thumb This working paper is made available by the Resource and Environmental economics and Policy Analysis (REPA) Research Group at the University of Victoria. REPA working papers have not been peer reviewed and contain preliminary research findings. They shall not be cited without the expressed written consent of the author(s). Editor's Note: The authors’ conclusion regarding ‘effective capacity’, i.e. the measure of a generator’s contribution to system reliability that is tied to meeting peak loads, is that it “is difficult to generalize, as it is a highly site-specific quantity determined by the correlation between wind resource and load” and that ‘values range from 26 % to 0% of rated capacity.” This conclusion is based, in part, on a 2003 study by the California Energy Commission that estimated that three wind farm aggregates- Altamont, San Gorgonio and Tehachpi, which collectively represent 75% of California’s deployed wind capacity- had relative capacity credits of 26.0%, 23.9% and 22.0% respectively. It is noteworthy that during California’s Summer ’06 energy crunch, as has been widely publicized in the press, wind power produced at 254.6 MW (10.2% of wind’s rated capacity of 2,500MW) at the time of peak demand (on July 24th) and over the preceding seven days (July 17-23) produced at 89.4 to 113.0 MW, averaging only 99.1 MW at the time of peak demand or just 4% of rated capacity.
1 Jun 2005

The Impact of Large Scale Wind Power Production On the Nordic Electricity System

Holttinen-nordicimpact_thumb This thesis studies the impact of large amounts of wind power on the Nordic electricity system. The impact on both the technical operation of the power system and the electricity market are investigated.Editor's Note:The author's focus on the averaging effect of a multitude of small wind turbines spread over a large geopgraphical area understates the reliability problems associated with wind power, particularly the cascade effect as wind turbines drop off-line.
17 Dec 2004

The Impact of Large Scale Wind Power Production On the Nordic Electricity System

Holttinen-nordicimpact_thumb This thesis studies the impact of large amounts of wind power on the Nordic electricity system. The impact on both the technical operation of the power system and the electricity market are investigated.Editor's Note:The author's focus on the averaging effect of a multitude of small wind turbines spread over a large geopgraphical area understates the reliability problems associated with wind power, particularly the cascade effect as wind turbines drop off-line.
17 Dec 2004

Integrating wind power in the European power systems

Ucte-integratingwindpower_thumb This position paper examines the profile of wind power, its impact on the network, security of supply and the quality of the energy delivered. It further deals with the reasons to establish certain technical requirements for the connection of wind power generation to the network. Editor's Note: This is a worthwhile read in its entirety (attached pdf file). Selected extracts appear below.
1 May 2004

Assessment of Safety Risks Arising from Wind Turbine Icing

Assessment_of_safety_risks_arising_from_wind_turbine_icing_thumb "Developers and owners of wind turbines have a duty to ensure the safety of the general public and their own staff. However, there are currently no guidelines for dealing with potential dangers arising from ice thrown off wind turbines. This puts developers, owners, planning authorities and insurers in a difficult position. To rectify this situation, the work presented here has commenced in order to produce an authoritative set of guidelines. Initial work has resulted in the development of a risk assessment methodology which has been used to demonstrate that the risk of being struck by ice thrown from a turbine is diminishingly small at distances greater than approximately 250 m from the turbine in a climate where moderate icing occurs."
2 Apr 1998

Wind Power: Capacity Factor, Intermittency, and what happens when the wind doesn’t blow?

Rerl_fact_sheet_2a_capacity_factor_thumb Wind turbines convert the kinetic energy in moving air into rotational energy, which in turn is converted to electricity. Since wind speeds vary from month to month and second to second, the amount of electricity wind can make varies constantly. Sometimes a wind turbine will make no power at all. This variability does affect the value of the wind power……Editor’s Note: This ‘fact sheet’ is, on the whole, a comparatively fair report. The definitions provided for capacity factor, efficiency, reliability, dispatchability, and availability are useful. Its discussion of back-up generation, marginal emissions and Germany & Denmark, however, is disingenuous as is, to a lesser degree, its discussion of capacity factor and availability. IWA's comments (updated October '06) on these issues follow selected extracts from the 'fact sheet' below.
1 Jan 1970

http://www.windaction.org/posts?location=Europe&topic=Technology&type=Document
back to top